Interplay of clamp loader subunits in opening the beta sliding clamp of Escherichia coli DNA polymerase III holoenzyme.

نویسندگان

  • F P Leu
  • M O'Donnell
چکیده

The Escherichia coli beta dimer is a ring-shaped protein that encircles DNA and acts as a sliding clamp to tether the replicase, DNA polymerase III holoenzyme, to DNA. The gamma complex (gammadeltadelta'chipsi) clamp loader couples ATP to the opening and closing of beta in assembly of the ring onto DNA. These proteins are functionally and structurally conserved in all cells. The eukaryotic equivalents are the replication factor C (RFC) clamp loader and the proliferating cell nuclear antigen (PCNA) clamp. The delta subunit of the E. coli gamma complex clamp loader is known to bind beta and open it by parting one of the dimer interfaces. This study demonstrates that other subunits of gamma complex also bind beta, although weaker than delta. The gamma subunit like delta, affects the opening of beta, but with a lower efficiency than delta. The delta' subunit regulates both gamma and delta ring opening activities in a fashion that is modulated by ATP interaction with gamma. The implications of these actions for the workings of the E. coli clamp loading machinery and for eukaryotic RFC and PCNA are discussed.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Clamp loader structure predicts the architecture of DNA polymerase III holoenzyme and RFC

Recent determinations of the crystal structure of the Escherichia coli gamma complex and delta-beta assembly have shed light on the bacterial clamp loading reaction. In this review, we discuss the structures of delta-beta and the gamma(3)deltadelta' complex and its mechanism of action as a clamp loader of the E. coli beta sliding clamp. We also expand upon the implications of the structural fin...

متن کامل

Devoted to the lagging strand-the subunit of DNA polymerase III holoenzyme contacts SSB to promote processive elongation and sliding clamp assembly.

Escherichia coli DNA polymerase III holoenzyme contains 10 different subunits which assort into three functional components: a core catalytic unit containing DNA polymerase activity, the beta sliding clamp that encircles DNA for processive replication, and a multisubunit clamp loader apparatus called gamma complex that uses ATP to assemble the beta clamp onto DNA. We examine here the function o...

متن کامل

Mechanism of Processivity Clamp Opening by the Delta Subunit Wrench of the Clamp Loader Complex of E. coli DNA Polymerase III

The dimeric ring-shaped sliding clamp of E. coli DNA polymerase III (beta subunit, homolog of eukaryotic PCNA) is loaded onto DNA by the clamp loader gamma complex (homolog of eukaryotic Replication Factor C, RFC). The delta subunit of the gamma complex binds to the beta ring and opens it. The crystal structure of a beta:delta complex shows that delta, which is structurally related to the delta...

متن کامل

ATP binding to the Escherichia coli clamp loader powers opening of the ring-shaped clamp of DNA polymerase III holoenzyme.

The Escherichia coli gamma complex serves as a clamp loader, catalyzing ATP-dependent assembly of beta protein clamps onto primed DNA templates during DNA replication. These ring-shaped clamps tether DNA polymerase III holoenzyme to the template, facilitating rapid and processive DNA synthesis. This report focuses on the role of ATP binding and hydrolysis catalyzed by the gamma complex during c...

متن کامل

The internal workings of a DNA polymerase clamp-loading machine.

Replicative DNA polymerases are multiprotein machines that are tethered to DNA during chain extension by sliding clamp proteins. The clamps are designed to encircle DNA completely, and they are manipulated rapidly onto DNA by the ATP-dependent activity of a clamp loader. We outline the detailed mechanism of gamma complex, a five-protein clamp loader that is part of the Escherichia coli replicas...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • The Journal of biological chemistry

دوره 276 50  شماره 

صفحات  -

تاریخ انتشار 2001